Benjamin Scheidt

I am a doctoral student under Prof. Dr. Nicole Schweikardt at Humboldt-Universität zu Berlin.

Currently, I examine the expressive power of (hyper)graph homomorphisms from a logical [23] and an algorithmical perspective [1].

You can reach me under my first name at this domain (mind my PGP key at the end of the page), my work email, or on LinkedIn.

Please send me pictures of your cat. 🐈

Portrait of Benjamin Scheidt.

Publications

  1. Cristian Riveros, Benjamin Scheidt and Nicole Schweikardt: Using Color Refinement to Boost Enumeration and Counting for Acyclic CQs of Binary Schemas. arXiv:2405.12358 [cs.DB].
  2. Benjamin Scheidt: On Homomorphism Indistinguishability and Hypertree Depth. Published at ICALP 2024. July 2024. DOI: 10.4230/LIPIcs.ICALP.2024.152. Full Version: arXiv:2404.10637 [cs.LO].
  3. Benjamin Scheidt and Nicole Schweikardt: Counting Homomorphisms from Hypergraphs of Bounded Generalised Hypertree Width: A Logical Characterisation. Published at MFCS 2023 (Slides). August 2023. DOI: 10.4230/LIPIcs.MFCS.2023.79. Full Version: arXiv:2303.10980 [cs.LO].

Education

Since 2022

Doctoral Candidate in Computer Science, Humboldt-Universität zu Berlin.
Work group Logic in Computer Science under Prof. Dr. Nicole Schweikardt.

2019 – 2022

M.Sc. in Computer Science, Humboldt-Universität zu Berlin.
Average of 1,0 · Thesis: First-Order Logic with Counting: Algorithmic and Structural Equivalences · Best Thesis Award.

2016 – 2019

B.Sc. in Computer Science, Humboldt-Universität zu Berlin.
Average of 1,4 · Thesis: Fractional Hypertree Decompositions of Width 2.

Teaching

I was a teaching assistant for the following courses:

Summer 2024
Selected Chapters of Logic: Locality (Website)

Master's course on the concept of locality in formal logics. Covered topics include Hanf- and Gaifman-locality for first-order logic and various extensions, and how locality can be used to prove non-expressibility and algorithmic meta theorems.

Winter 2023/24
Logic in Computer Science (Website)

Introductory course on logic in computer science. Students learn to describe and use formal systems and the basics of mathematical logics.

Summer 2023
Logic and Complexity (Website)

Master's course on classical results from descriptive complexity. Covered topics include Traktenbrot's Theorem, Fagin's Theorem, zero-one laws and fixed-point logics.

Winter 2022/23
Discrete Structures (Website)

Introductory course for freshmen that teaches basics in discrete mathematics — i.e. basics on proofs, relational structures, graph theory, combinatorics, discrete stochastics…

Summer 2022
Logic for IMP (Website)

Introductory course on logic in computer science, tailored to a specific study program combining math, physics and computer science.

My PGP Public Key

Save as File
				-----BEGIN PGP PUBLIC KEY BLOCK-----

				xjMEZIb+EhYJKwYBBAHaRw8BAQdA1ljTKbiIxBBR2xEi6+8jPyGX9uscW3rt
				in9ONK2oh7HNKWJlbmphbWluQHNjaGVpZHQuaW8gPGJlbmphbWluQHNjaGVp
				ZHQuaW8+wowEEBYKAD4FgmSG/hIECwkHCAmQLAXXulPC+IIDFQgKBBYAAgEC
				GQECmwMCHgEWIQR3ZFk3Seyr9kSoULosBde6U8L4ggAAra8A/A/bEHvvTa9p
				s+88Z6EaItwaDrSqA/QOOAJ++octWRWkAQDUeCzwAPCMg7GZvXgwaeb5qLUv
				YSZcjiTrzEkmyepMD844BGSG/hISCisGAQQBl1UBBQEBB0C8r7z4FMoYwiiP
				AJm7ErXZF7i9PgxPSlyYveD/HXV0PwMBCAfCeAQYFggAKgWCZIb+EgmQLAXX
				ulPC+IICmwwWIQR3ZFk3Seyr9kSoULosBde6U8L4ggAATdQA/3A/RX05cJSS
				Z+84qgUE9mNaZxJ+Pm+Tm3oe4iu7+KgBAQCbutsKKD2HuZTyhhmKWPFT21NQ
				m5Jy1/IarFRuEw2zBg==
				=Ja/3
				-----END PGP PUBLIC KEY BLOCK-----